Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
iScience ; 2023.
Article in English | EuropePMC | ID: covidwho-2300191

ABSTRACT

Evaluating the serum cross-neutralization responses after breakthrough infection with various SARS-CoV-2 variants provides valuable insight for developing variant-proof COVID-19 booster vaccines. However, fairly comparing the impact of breakthrough infections with distinct epidemic timing on cross-neutralization responses, influenced by the exposure interval between vaccination and infection, is challenging. To compare the impact of pre-Omicron to Omicron breakthrough infection, we estimated the effects on cross-neutralizing responses by the exposure interval using Bayesian hierarchical modeling. The saturation time required to generate saturated cross-neutralization responses differed by variant, with variants more antigenically distant from the ancestral strain requiring longer intervals of 2-4 months. The breadths of saturated cross-neutralization responses to Omicron lineages were comparable in pre-Omicron and Omicron breakthrough infections. Our results highlight the importance of vaccine dosage intervals of 4 months or longer, regardless of the antigenicity of the exposed antigen, to maximize the breadth of serum cross-neutralization covering SARS-CoV-2 Omicron lineages. Graphical

2.
Global health & medicine ; 5(1):5-14, 2023.
Article in English | EuropePMC | ID: covidwho-2281170

ABSTRACT

Summary As coronavirus disease 2019 (COVID-19) outbreaks in healthcare facilities are a serious public health concern, we performed a case-control study to investigate the risk of COVID-19 infection in healthcare workers. We collected data on participants' sociodemographic characteristics, contact behaviors, installation status of personal protective equipment, and polymerase chain reaction testing results. We also collected whole blood and assessed seropositivity using the electrochemiluminescence immunoassay and microneutralization assay. In total, 161 (8.5%) of 1,899 participants were seropositive between August 3 and November 13, 2020. Physical contact (adjusted odds ratio 2.4, 95% confidence interval 1.1-5.6) and aerosol-generating procedures (1.9, 1.1-3.2) were associated with seropositivity. Using goggles (0.2, 0.1-0.5) and N95 masks (0.3, 0.1-0.8) had a preventive effect. Seroprevalence was higher in the outbreak ward (18.6%) than in the COVID-19 dedicated ward (1.4%). Results showed certain specific risk behaviors of COVID-19;proper infection prevention practices reduced these risks.

3.
Nat Commun ; 14(1): 1620, 2023 03 23.
Article in English | MEDLINE | ID: covidwho-2284921

ABSTRACT

The prevalence of the Omicron subvariant BA.2.75 rapidly increased in India and Nepal during the summer of 2022, and spread globally. However, the virological features of BA.2.75 are largely unknown. Here, we evaluated the replicative ability and pathogenicity of BA.2.75 clinical isolates in Syrian hamsters. Although we found no substantial differences in weight change among hamsters infected with BA.2, BA.5, or BA.2.75, the replicative ability of BA.2.75 in the lungs is higher than that of BA.2 and BA.5. Of note, BA.2.75 causes focal viral pneumonia in hamsters, characterized by patchy inflammation interspersed in alveolar regions, which is not observed in BA.5-infected hamsters. Moreover, in competition assays, BA.2.75 replicates better than BA.5 in the lungs of hamsters. These results suggest that BA.2.75 can cause more severe respiratory disease than BA.5 and BA.2 in a hamster model and should be closely monitored.


Subject(s)
COVID-19 , Animals , Cricetinae , SARS-CoV-2 , Biological Assay , DNA Replication , India , Mesocricetus
4.
Nat Commun ; 14(1): 1451, 2023 03 15.
Article in English | MEDLINE | ID: covidwho-2283339

ABSTRACT

The immunogenicity of mRNA vaccines has not been well studied when compared to different vaccine modalities in the context of additional boosters. Here we show that longitudinal analysis reveals more sustained SARS-CoV-2 spike receptor-binding domain (RBD)-binding IgG titers with the breadth to antigenically distinct variants by the S-268019-b spike protein booster compared to the BNT162b2 mRNA homologous booster. The durability and breadth of RBD-angiotensin-converting enzyme 2 (ACE2) binding inhibitory antibodies are pronounced in the group without systemic adverse events (AEs) after the S-268019-b booster, leading to the elevated neutralizing activities against Omicron BA.1 and BA.5 variants in the stratified group. In contrast, BNT162b2 homologous booster elicited antibodies to spike N-terminal domain in proportion to the AE scores. High-dimensional immune profiling identifies early CD16+ natural killer cell dynamics with CCR3 upregulation, as one of the correlates for the distinct anti-RBD antibody responses by the S-268019-b booster. Our results illustrate the combinational effects of heterologous booster on the immune dynamics and the durability and breadth of recalled anti-RBD antibody responses against emerging virus variants.


Subject(s)
Antibody Formation , COVID-19 Vaccines , COVID-19 , Humans , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Vaccines/immunology
5.
iScience ; 26(2): 105969, 2023 Feb 17.
Article in English | MEDLINE | ID: covidwho-2179844

ABSTRACT

The immune responses to SARS-CoV-2 variants in COVID-19 cases are influenced by various factors including pre-existing immunity via vaccination and prior infection. Elucidating the drivers for upgrading neutralizing activity to SARS-CoV-2 in COVID-19 cases with pre-existing immunity will aid in improving COVID-19 booster vaccines with enhanced cross-protection against antigenically distinct variants, including the Omicron sub-lineage BA.4/5. This study revealed that the magnitude and breadth of neutralization activity to SARS-CoV-2 variants after breakthrough infections are determined primarily by upper respiratory viral load and vaccination-infection time interval. Extensive neutralizing breadth, covering even the most antigenically distant BA.4/5, was observed in cases with higher viral load and longer time intervals. Antigenic cartography depicted a critical role of the time interval in expanding the breadth of neutralization to SARS-CoV-2 variants. Our results illustrate the importance of dosing interval optimization as well as antigen design in developing variant-proof booster vaccines.

6.
J Virol ; 97(1): e0136622, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2193449

ABSTRACT

The diversity of SARS-CoV-2 mutations raises the possibility of reinfection of individuals previously infected with earlier variants, and this risk is further increased by the emergence of the B.1.1.529 Omicron variant. In this study, we used an in vivo, hamster infection model to assess the potential for individuals previously infected with SARS-CoV-2 to be reinfected with Omicron variant and we also investigated the pathology associated with such infections. Initially, Syrian hamsters were inoculated with a lineage A, B.1.1.7, B.1.351, B.1.617.2 or a subvariant of Omicron, BA.1 strain and then reinfected with the BA.1 strain 5 weeks later. Subsequently, the impact of reinfection with Omicron subvariants (BA.1 and BA.2) in individuals previously infected with the BA.1 strain was examined. Although viral infection and replication were suppressed in both the upper and lower airways, following reinfection, virus-associated RNA was detected in the airways of most hamsters. Viral replication was more strongly suppressed in the lower respiratory tract than in the upper respiratory tract. Consistent amino acid substitutions were observed in the upper respiratory tract of infected hamsters after primary infection with variant BA.1, whereas diverse mutations appeared in hamsters reinfected with the same variant. Histopathology showed no acute pneumonia or disease enhancement in any of the reinfection groups and, in addition, the expression of inflammatory cytokines and chemokines in the airways of reinfected animals was only mildly elevated. These findings are important for understanding the risk of reinfection with new variants of SARS-CoV-2. IMPORTANCE The emergence of SARS-CoV-2 variants and the widespread use of COVID-19 vaccines has resulted in individual differences in immune status against SARS-CoV-2. A decay in immunity over time and the emergence of variants that partially evade the immune response can also lead to reinfection. In this study, we demonstrated that, in hamsters, immunity acquired following primary infection with previous SARS-CoV-2 variants was effective in preventing the onset of pneumonia after reinfection with the Omicron variant. However, viral infection and multiplication in the upper respiratory tract were still observed after reinfection. We also showed that more diverse nonsynonymous mutations appeared in the upper respiratory tract of reinfected hamsters that had acquired immunity from primary infection. This hamster model reveals the within-host evolution of SARS-CoV-2 and its pathology after reinfection, and provides important information for countermeasures against diversifying SARS-CoV-2 variants.


Subject(s)
COVID-19 , Reinfection , Animals , Cricetinae , Mesocricetus , RNA, Viral , SARS-CoV-2/genetics
8.
Nature ; 2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2096734

ABSTRACT

The BA.2 sublineage of the SARS-CoV-2 Omicron variant has become dominant in most countries around the world; however, the prevalence of BA.4 and BA.5 is increasing rapidly in several regions. BA.2 is less pathogenic in animal models than previously circulating variants of concern1-4. Compared with BA.2, however, BA.4 and BA.5 possess additional substitutions in the spike protein, which play a key role in viral entry, raising concerns that the replication capacity and pathogenicity of BA.4 and BA.5 are higher than those of BA.2. Here we have evaluated the replicative ability and pathogenicity of BA.4 and BA.5 isolates in wild-type Syrian hamsters, human ACE2 (hACE2) transgenic hamsters and hACE2 transgenic mice. We have observed no obvious differences among BA.2, BA.4 and BA.5 isolates in growth ability or pathogenicity in rodent models, and less pathogenicity compared to a previously circulating Delta (B.1.617.2 lineage) isolate. In addition, in vivo competition experiments revealed that BA.5 outcompeted BA.2 in hamsters, whereas BA.4 and BA.2 exhibited similar fitness. These findings suggest that BA.4 and BA.5 clinical isolates have similar pathogenicity to BA.2 in rodents and that BA.5 possesses viral fitness superior to that of BA.2.

9.
Nat Commun ; 13(1): 6100, 2022 Oct 15.
Article in English | MEDLINE | ID: covidwho-2077054

ABSTRACT

In cultured cells, SARS-CoV-2 infects cells via multiple pathways using different host proteases. Recent studies have shown that the furin and TMPRSS2 (furin/TMPRSS2)-dependent pathway plays a minor role in infection of the Omicron variant. Here, we confirm that Omicron uses the furin/TMPRSS2-dependent pathway inefficiently and enters cells mainly using the cathepsin-dependent endocytosis pathway in TMPRSS2-expressing VeroE6/TMPRSS2 and Calu-3 cells. This is the case despite efficient cleavage of the spike protein of Omicron. However, in the airways of TMPRSS2-knockout mice, Omicron infection is significantly reduced. We furthermore show that propagation of the mouse-adapted SARS-CoV-2 QHmusX strain and human clinical isolates of Beta and Gamma is reduced in TMPRSS2-knockout mice. Therefore, the Omicron variant isn't an exception in using TMPRSS2 in vivo, and analysis with TMPRSS2-knockout mice is important when evaluating SARS-CoV-2 variants. In conclusion, this study shows that TMPRSS2 is critically important for SARS-CoV-2 infection of murine airways, including the Omicron variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Cathepsins , Furin/genetics , Furin/metabolism , Mice, Knockout , Peptide Hydrolases , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
12.
Med (N Y) ; 3(6): 406-421.e4, 2022 06 10.
Article in English | MEDLINE | ID: covidwho-1926779

ABSTRACT

BACKGROUND: The Omicron variant of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) was identified in Japan in November 2021. This variant contains up to 36 mutations in the spike protein, the target of neutralizing antibodies, and can escape vaccine-induced immunity. A booster vaccination campaign began with healthcare workers and high-risk groups. The safety and immunogenicity of the three-dose vaccination against Omicron remain unknown. METHODS: A total of 272 healthcare workers were initially evaluated for long-term vaccine safety and immunogenicity. We further established a vaccinee panel to evaluate the safety and immunogenicity against variants of concern (VOCs), including the Omicron variants, using a live virus microneutralization assay. FINDINGS: Two-dose vaccination induced robust anti-spike antibodies and neutralization titers (NTs) against the ancestral strain WK-521, whereas NTs against VOCs were significantly lower. Within 93-247 days of the second vaccine dose, NTs against Omicron were completely abolished in up to 80% of individuals in the vaccinee panel. Booster dose induced a robust increase in anti-spike antibodies and NTs against the WK-521, Delta, and Omicron variants. There were no significant differences in the neutralization ability of sera from boosted individuals among the Omicron subvariants BA.1, BA.1.1, and BA.2. Boosting increased the breadth of humoral immunity and cross-reactivity with Omicron without changes in cytokine signatures and adverse event rate. CONCLUSIONS: The third vaccination dose is safe and increases neutralization against Omicron variants. FUNDING: This study was supported by grants from AMED (grants JP21fk0108104 and JP21mk0102146).


Subject(s)
Antibodies, Viral , BNT162 Vaccine , COVID-19 , Immunization, Secondary , Immunogenicity, Vaccine , Antibodies, Neutralizing , BNT162 Vaccine/immunology , COVID-19/prevention & control , Cross Reactions , Humans , Immunity, Humoral , Neutralization Tests , RNA, Messenger , SARS-CoV-2/genetics
13.
Antiviral Res ; 205: 105372, 2022 09.
Article in English | MEDLINE | ID: covidwho-1914151

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant BA.2 has spread in many countries, replacing the earlier Omicron subvariant BA.1 and other variants. Here, using a cell culture infection assay, we quantified the intrinsic sensitivity of BA.2 and BA.1 compared with other variants of concern, Alpha, Gamma, and Delta, to five approved-neutralizing antibodies and antiviral drugs. Our assay revealed the diverse sensitivities of these variants to antibodies, including the loss of response of both BA.1 and BA.2 to casirivimab and of BA.1 to imdevimab. In contrast, EIDD-1931 and nirmatrelvir showed a more conserved activities to these variants. The viral response profile combined with mathematical analysis estimated differences in antiviral effects among variants in the clinical concentrations. These analyses provide essential evidence that gives insight into variant emergence's impact on choosing optimal drug treatment.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , Antiviral Agents/pharmacology , Humans
14.
PLoS Pathog ; 18(6): e1010590, 2022 06.
Article in English | MEDLINE | ID: covidwho-1892333

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been transmitted across all over the world, in contrast to the limited epidemic of genetically- and virologically-related SARS-CoV. However, the molecular basis explaining the difference in the virological characteristics among SARS-CoV-2 and SARS-CoV has been poorly defined. Here we identified that host sialoglycans play a significant role in the efficient spread of SARS-CoV-2 infection, while this was not the case with SARS-CoV. SARS-CoV-2 infection was significantly inhibited by α2-6-linked sialic acid-containing compounds, but not by α2-3 analog, in VeroE6/TMPRSS2 cells. The α2-6-linked compound bound to SARS-CoV-2 spike S1 subunit to competitively inhibit SARS-CoV-2 attachment to cells. Enzymatic removal of cell surface sialic acids impaired the interaction between SARS-CoV-2 spike and angiotensin-converting enzyme 2 (ACE2), and suppressed the efficient spread of SARS-CoV-2 infection over time, in contrast to its least effect on SARS-CoV spread. Our study provides a novel molecular basis of SARS-CoV-2 infection which illustrates the distinctive characteristics from SARS-CoV.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Peptidyl-Dipeptidase A/metabolism , Polysaccharides/metabolism , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism
15.
Med (N Y) ; 3(4): 249-261.e4, 2022 04 08.
Article in English | MEDLINE | ID: covidwho-1783638

ABSTRACT

Background: The immune profile against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has dramatically diversified due to a complex combination of exposure to vaccines and infection by various lineages/variants, likely generating a heterogeneity in protective immunity in a given population. To further complicate this, the Omicron variant, with numerous spike mutations, has emerged. These circumstances have created the need to assess the potential of immune evasion by Omicron in individuals with various immune histories. Methods: The neutralization susceptibility of the variants, including Omicron and their ancestors, was comparably assessed using a panel of plasma/serum derived from individuals with divergent immune histories. Blood samples were collected from either mRNA vaccinees or from those who suffered from breakthrough infections of Alpha/Delta with multiple time intervals following vaccination. Findings: Omicron was highly resistant to neutralization in fully vaccinated individuals without a history of breakthrough infections. In contrast, robust cross-neutralization against Omicron was induced in vaccinees that experienced breakthrough infections. The time interval between vaccination and infection, rather than the variant types of infection, was significantly correlated with the magnitude and potency of Omicron-neutralizing antibodies. Conclusions: Immune histories with breakthrough infections can overcome the resistance to infection by Omicron, with the vaccination-infection interval being the key determinant of the magnitude and breadth of neutralization. The diverse exposure history in each individual warrants a tailored and cautious approach to understanding population immunity against Omicron and future variants. Funding: This study was supported by grants from the Japan Agency for Medical Research and Development (AMED).


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , Humans , Postoperative Complications , Vaccination
16.
Sci Immunol ; 7(70): eabn8590, 2022 04 22.
Article in English | MEDLINE | ID: covidwho-1673342

ABSTRACT

Multiple SARS-CoV-2 variants have mutations in the spike receptor binding domain (RBD) with potential to evade neutralizing antibody. In particular, the Beta and Omicron variants escape from antibody neutralizing activity in those who received two doses of BNT162b2 mRNA vaccine. Nonetheless, boosting with a third vaccine dose or by breakthrough infection improves the overall breadth of the neutralizing antibodies, but the mechanism remains unclear. Here, we longitudinally profiled the cellular composition of RBD-binding memory B cell subsets and their antibody binding and neutralizing activity against SARS-CoV-2 variants after the second dose of mRNA vaccine. Two doses of the mRNA vaccine elicited plasma neutralizing antibodies with a limited activity against Beta and Omicron but induced an expanded antibody breadth overtime, up to 4.9 months after vaccination. In contrast, more than one-third of RBD-binding IgG+ memory B cells with a resting phenotype initially bound the Beta and Omicron variants and steadily increased the B cell receptor breadth overtime. As a result, a fraction of the resting memory B cell subset secreted Beta and Omicron-neutralizing antibody when stimulated in vitro. The neutralizing breadth of the resting memory B cell subset helps us understand the prominent recall of Omicron-neutralizing antibodies after an additional booster or breakthrough infection in fully vaccinated individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Memory B Cells , Vaccines, Synthetic , mRNA Vaccines
17.
Jpn J Infect Dis ; 74(5): 465-472, 2021 Sep 22.
Article in English | MEDLINE | ID: covidwho-1436361

ABSTRACT

Soon after the 2019 outbreak of coronavirus disease 2019 in Wuhan, China, a protocol for real-time RT-PCR assay detection of severe acute respiratory syndrome coronavirus (SARS-CoV-2) was established by the National Institute of Infectious Diseases (NIID) in Japan. The protocol used Charité's nucleocapsid (Sarbeco-N) and NIID nucleocapsid (NIID-N2) assays. During the following months, SARS-CoV-2 spread and caused a global pandemic, and various SARS-CoV-2 sequences were registered in public databases, such as the Global Initiative on Sharing All Influenza Data (GISAID). In this study, we evaluated the S2 assay (NIID-S2) that was newly developed to replace the Sarbeco-N assay and the performance of the NIID-N2 and NIID-S2 assays, referring to mismatches in the primer/probe targeted region. We found that the analytical sensitivity and specificity of the NIID-S2 set were comparable to those of the NIID-N2 assay, and the detection rate for clinical specimens was identical to that of the NIID-N2 assay. Furthermore, among the available sequences (approximately 192,000), the NIID-N2 and NIID-S2 sets had 2.6% and 1.2% mismatched sequences, respectively, although most of these mismatches did not affect the amplification efficiency, except the 3' end of the NIID-N2 forward primer. These findings indicate that the previously developed NIID-N2 assay is suitable for the detection of SARS-CoV-2 with support from the newly developed NIID-S2 set.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Coronavirus Nucleocapsid Proteins/genetics , DNA Primers/genetics , Humans , Japan , Phosphoproteins/genetics , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/genetics
18.
Immunity ; 54(10): 2385-2398.e10, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1370548

ABSTRACT

Potent neutralizing SARS-CoV-2 antibodies often target the spike protein receptor-binding site (RBS), but the variability of RBS epitopes hampers broad neutralization of multiple sarbecoviruses and drifted viruses. Here, using humanized mice, we identified an RBS antibody with a germline VH gene that potently neutralized SARS-related coronaviruses, including SARS-CoV and SARS-CoV-2 variants. X-ray crystallography revealed coordinated recognition by the heavy chain of non-RBS conserved sites and the light chain of RBS with a binding angle mimicking the angiotensin-converting enzyme 2 (ACE2) receptor. The minimum footprints in the hypervariable region of RBS contributed to the breadth of neutralization, which was enhanced by immunoglobulin G3 (IgG3) class switching. The coordinated binding resulted in broad neutralization of SARS-CoV and emerging SARS-CoV-2 variants of concern. Low-dose therapeutic antibody treatment in hamsters reduced the virus titers and morbidity during SARS-CoV-2 challenge. The structural basis for broad neutralizing activity may inform the design of a broad spectrum of therapeutics and vaccines.


Subject(s)
Broadly Neutralizing Antibodies/immunology , Cross Reactions/immunology , SARS-CoV-2/immunology , Animals , Betacoronavirus/immunology , Binding Sites, Antibody , Broadly Neutralizing Antibodies/chemistry , Broadly Neutralizing Antibodies/therapeutic use , COVID-19/prevention & control , COVID-19/therapy , COVID-19/virology , Cricetinae , Humans , Immunoglobulin Class Switching , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Mice , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
19.
PLoS Negl Trop Dis ; 15(7): e0009553, 2021 07.
Article in English | MEDLINE | ID: covidwho-1360646

ABSTRACT

BACKGROUND: Jamestown Canyon virus (JCV) is a mosquito-borne orthobunyavirus that causes acute febrile illness, meningitis, and meningoencephalitis, primarily in North American adults. Currently, there are no available vaccines or specific treatments against JCV infections. METHODOLOGY/PRINCIPAL FINDINGS: The antiviral efficacy of favipiravir (FPV) against JCV infection was evaluated in vitro and in vivo in comparison with that of ribavirin (RBV) and 2'-fluoro-2'-deoxycytidine (2'-FdC). The in vitro inhibitory effect of these drugs on JCV replication was evaluated in Vero and Neuro-2a (N2A) cells. The efficacy of FPV in the treatment of JCV infection in vivo was evaluated in C57BL/6J mice inoculated intracerebrally with JCV, as per the survival, viral titers in the brain, and viral RNA load in the blood. The 90% inhibitory concentrations (IC90) of FPV, RBV, and 2'-FdC were 41.0, 61.8, and 13.6 µM in Vero cells and 20.7, 25.8, and 8.8 µM in N2A cells, respectively. All mice infected with 1.0×104 TCID50 died or were sacrificed within 10 days post-infection (dpi) without treatment. However, mice treated with FPV for 5 days [initiated either 2 days prior to infection (-2 dpi-2 dpi) or on the day of infection (0 dpi-4 dpi)] survived significantly longer than control mice, administered with PBS (p = 0.025 and 0.011, respectively). Moreover, at 1 and 3 dpi, the virus titers in the brain were significantly lower in FPV-treated mice (0 dpi-4 dpi) versus PBS-treated mice (p = 0.002 for both 1 and 3 dpi). CONCLUSIONS/SIGNIFICANCE: Although the intracerebral inoculation route is thought to be a challenging way to evaluate drug efficacy, FPV inhibits the in vitro replication of JCV and prolongs the survival of mice intracerebrally inoculated with JCV. These results will enable the development of a specific antiviral treatment against JCV infections and establishment of an effective animal model.


Subject(s)
Amides/administration & dosage , Antiviral Agents/administration & dosage , Encephalitis Virus, California/drug effects , Encephalitis, California/drug therapy , Pyrazines/administration & dosage , Animals , Chlorocebus aethiops , Disease Models, Animal , Drug Evaluation, Preclinical , Encephalitis Virus, California/genetics , Encephalitis Virus, California/growth & development , Encephalitis, California/mortality , Encephalitis, California/virology , Female , Humans , Mice , Mice, Inbred C57BL , Vero Cells
20.
Immunity ; 54(8): 1841-1852.e4, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1293863

ABSTRACT

Antibody titers against SARS-CoV-2 slowly wane over time. Here, we examined how time affects antibody potency. To assess the impact of antibody maturation on durable neutralizing activity against original SARS-CoV-2 and emerging variants of concern (VOCs), we analyzed receptor binding domain (RBD)-specific IgG antibodies in convalescent plasma taken 1-10 months after SARS-CoV-2 infection. Longitudinal evaluation of total RBD IgG and neutralizing antibody revealed declining total antibody titers but improved neutralization potency per antibody to original SARS-CoV-2, indicative of antibody response maturation. Neutralization assays with authentic viruses revealed that early antibodies capable of neutralizing original SARS-CoV-2 had limited reactivity toward B.1.351 (501Y.V2) and P.1 (501Y.V3) variants. Antibodies from late convalescents exhibited increased neutralization potency to VOCs, suggesting persistence of cross-neutralizing antibodies in plasma. Thus, maturation of the antibody response to SARS-CoV-2 potentiates cross-neutralizing ability to circulating variants, suggesting that declining antibody titers may not be indicative of declining protection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Antibodies, Monoclonal/immunology , Antibody Specificity , COVID-19/epidemiology , Humans , Immunoglobulin G , Neutralization Tests , SARS-CoV-2/genetics , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL